An Algorithm for the Decomposition of Semisimple Lie Algebras
نویسنده
چکیده
We consider the problem of decomposing a semisimple Lie algebra deened over a eld of characteristic zero as a direct sum of its simple ideals. The method is based on the decomposition of the action of a Cartan subalgebra. An implementation of the algorithm in the system ELIAS is discussed at the end of the paper.
منابع مشابه
A Sort-jacobi Algorithm on Semisimple Lie Algebras
A structure preserving Sort-Jacobi algorithm for computing eigenvalues or singular values is presented. The proposed method applies to an arbitrary semisimple Lie algebra on its (−1)-eigenspace of the Cartan involution. Local quadratic convergence for arbitrary cyclic schemes is shown for the regular case. The proposed method is independent of the representation of the underlying Lie algebra an...
متن کاملNon-solvable contractions of semisimple Lie algebras in low dimension
The problem of non-solvable contractions of Lie algebras is analyzed. By means of a stability theorem, the problem is shown to be deeply related to the embeddings among semisimple Lie algebras and the resulting branching rules for representations. With this procedure, we determine all deformations of indecomposable Lie algebras having a nontrivial Levi decomposition onto semisimple Lie algebras...
متن کاملRepresentations of Semisimple Lie Algebras
This paper studies the representations of semisimple Lie algebras, with care given to the case of sln(C). We develop and utilize various tools, including the adjoint representation, the Killing form, root space decomposition, and the Weyl group to classify the irreducible representations of semisimple Lie algebras.
متن کاملGradient Flows, Convexity, and Adjoint Orbits
This dissertation studies some matrix results and gives their generalizations in the context of semisimple Lie groups. The adjoint orbit is the primary object in our study. The dissertation consists of four chapters. Chapter 1 is a brief introduction about the interplay between matrix theory and Lie theory. In Chapter 2 we introduce some structure theory of semisimple Lie groups and Lie algebra...
متن کاملRepresentations of Complex Semisimple Lie Groups and Lie Algebras by K. R. Parthasarathy, R. Ranga Rao and v. S. Varadarajan
1. Notation. The object of this note is to announce some results on representations of complex semisimple Lie groups and Lie algebras. © is a semisimple Lie algebra over C, the field of complex numbers. ®, considered over i?, the field of real numbers, is denoted by ®0. ^ is a Cartan subalgebra of ®, W, the Weyl group of (®, Ï)). We use the standard terminology in the theory of semisimple Lie a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 187 شماره
صفحات -
تاریخ انتشار 1997